The effect of motor action and different sensory modalities on terrain classification in a quadruped robot running with multiple gaits

نویسندگان

  • Matej Hoffmann
  • Karla Stépánová
  • Michal Reinstein
چکیده

Discriminating or classifying different terrains is an important ability for every autonomousmobile robot. A variety of sensors, preprocessing techniques, and algorithms in different robots were applied. However, little attentionwas paid to theway sensory datawas generated and to the contribution of different sensory modalities. In this work, a quadruped robot traversing different grounds using a variety of gaits is used, equipped with a collection of proprioceptive (encoders on active, and passive compliant joints), inertial, and foot pressure sensors. The effect of different gaits on classification performance is assessed and it is demonstrated that separate terrain classifiers for eachmotor program should be employed. Furthermore, poor performance of randomly generated motor commands confirms the importance of coordinated behavior on sensory information structuring. The collection of sensors sensitive to active, ‘‘tactile’’, terrain exploration proved effective. Among the individual modalities, encoders on passive compliant joints delivered best results. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perception, motor learning, and speed adaptation exploiting body dynamics: case studies in a quadruped robot

Animals and humans are constantly faced with a highly dimensional stream of incoming sensory information. At the same time, they have to command their highly complex and multidimensional bodies. Yet, they seamlessly cope with this situation and successfully perform various tasks. For autonomous robots, this poses a challenge: robots performing in the real world are often faced with the curse of...

متن کامل

Dynamic Gaits and Control in Flexible Body Quadruped Robot

Legged robots are highly attractive for military purposes such as carrying heavy loads on uneven terrain for long durations because of the higher mobility they give on rough terrain compared to wheeled vehicles/robots. Existing state-of-the-art quadruped robots developed by Boston Dynamics such as LittleDog and BigDog do not have flexible bodies. It can be easily seen that the agility of quadru...

متن کامل

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

On Passive Quadrupedal Bounding with Flexible Linear Torso

This paper studies the effect of flexible linear torso on the dynamics of passive quadruped bounding. A reduced-order passive and conservative model with linear flexible torso and springy legs is introduced. The model features extensive spine deformation during high-speed bounding, resembling those observed in a cheetah. Fixed points corresponding to cyclic bounding motions are found and calcul...

متن کامل

Using Sensorimotor Contingencies for Terrain Discrimination and Adaptive Walking Behavior in the Quadruped Robot Puppy

In conventional “sense-think-act” control architectures, perception is reduced to a passive collection of sensory information, followed by a mapping onto a prestructured internal world model. For biological agents, Sensorimotor Contingency Theory (SMCT) posits that perception is not an isolated processing step, but is constituted by knowing and exercising the law-like relations between actions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014